
1 1 1 University of Michigan 1 1 

1 

Centip3De: A 64-Core, 3D Stacked, 

Near-Threshold System 

Ronald G. Dreslinski 

 

David Fick, Bharan Giridhar, 

Gyouho Kim, Sangwon Seo, Matthew Fojtik, 

Sudhir Satpathy, Yoonmyung Lee, Daeyeon Kim, 

Nurrachman Liu, Michael Wieckowski, Gregory Chen, 

Trevor Mudge, Dennis Sylvester, David Blaauw 

 

University of Michigan 

 



2 2 2 University of Michigan 



U 
CVdd

2

A

IleakVdd

Af

The emerging dilemma:  

More and more gates can fit on a die,  

but cooling constraints are restricting their use 

The Problem of Power 

Circuit supply 
voltages are no 
longer scaling… 

Power does not 
decrease at the same 

rate that transistor 
count increases, 

resulting in increased 
energy density 

A = gate area  scaling 1/s2 

C = capacitance  scaling < 1/s 

Dynamic 

dominates 
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Today: Super-Vth, High Performance, Power Constrained 
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Large gate overdrive favors 

performance with 

unsustainable power density 

 

Must design within fixed TDP 

 

Goal: maintain performance, 

improved Energy/Operation 

Normalized CPU Metrics 
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Subthreshold Design 
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12-16X 

Operating in sub-threshold 

yields large power gains at the 

expense of performance.  

 

Applications: sensors, medical 
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Subthreshold Design 
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Operating in sub-threshold 

yields large power gains at the 

expense of performance.  

 

Applications: sensors, medical 

Phoenix 2 Processor, ISSCC’10 
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Near-Threshold Computing (NTC) 

NTC Super-Vth Sub-Vth 

E
n
e
rg

y
 /

 O
p
e
ra

ti
o
n
 

L
o
g
 (

D
e
la

y
) 

Supply Voltage 
0 Vth Vnom 

~10X 

~50-100X 

~2X 

~6-8X 

Near-Threshold Computing (NTC): 
•>60X power reduction 

•6-8X energy reduction 

•  Enables 3D integration 
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Architectural Impact of NTC 

 Caches have higher Vopt and operating frequency 

 Smaller activity rate when compared to core logic 

 Leakage larger proportion of total power in caches 

 New Architectures Possible 

 

Vt 

Core 

L1 

L2 

Core 

L1 

L2 
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 SRAM is run at a higher VDD 

 Caches operate faster than core 

 Can introduce clustered architecture 

 Multiple cores share L1 

 Cores see private L1 

 L1 still provides single-cycle latency 

 Advantages:  

 Less coherence/snoop traffic 

 Larger cache for processes that need it 

 Drawbacks: 

 Core conflicts evicting L1 data 

 Not dominant in simulation 

 Longer interconnect 

 3D addressable 

 

 

 

Cluster Cluster Cluster 

Proposed NTC Architecture 

L1 

BUS / Switched Network 

Next Level Memory 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

BUS / Switched Network 

Next Level Memory 

 
 

Cluster 
 

 

 

 

 

 

 

L1 

Core Core Core Core 

L1 Shared Cache 
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Proposed Boosting Approach 

Measured results for 130nm LP design 

 10MHz becomes ~110MHz in 32nm simulation 

140 FO4 delay core 

 

Baseline 

 Cache runs 4x core frequency 

 Pipelined cache 

 

Better Single Thread Performance 

 Turn some cores off, speed up the rest  

 Cache de-pipelined 

 Faster response time, same throughput 

 Core sees larger cache 

 Faster cores needs larger caches 
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Core Core Core 

4 Cores @ 10MHz (650mV) 

Cache @ 40MHz (800mV) 

Core Core Core 

 
 

Cluster 
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1 Core @ 40MHz (850mV) 

Cache @ 80MHz (1.15 V) 

Core Core Core 

 
 

Cluster 
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L1 

1 Core @ 80MHz (1.15V) 

Cache @ 160MHz (1.65V) 

         

         

   

4x 

8x 
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Cache Timing 

Data 
Array Tag Array 

= 
Data 
Array 

Tag Array 

= 

NTC Mode (3/4 Cores) 

Low power 

Tag arrays read first 

0-1 data arrays accessed 

Boost Mode (1/2) 

Low latency 

Data and tags read in parallel 

4 data arrays accessed 
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Cache Timing 

Data 
Array 

Tag Array 

= 

NTC Mode (3/4 Cores) 

Low power 

Tag arrays read first 

0-1 data arrays accessed 

Other

Access
Other

Access
Tag

Read

Tag

Comp

Data

Read
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EX Stage Cache Access MEM StageIF/DE Stage

Edge
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Edge

B

Edge
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Edge
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Cache Timing 

Data 
Array Tag Array 

= 

Boost Mode (1/2) 

Low latency 

Data and tags read in parallel 

4 data arrays accessed 

EX Stage Cache Access MEM StageIF/DE Stage

Other

Access
Other

Access
Tag & Data

Read

Tag Compare

& Mem Access

Edge

A

Edge

B
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Centip3De System Overview 
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Centip3De System Overview 

Measured 

 7-Layer NTC 

system 

 

 2-Layer system 

completed 

fabrication 

with measured 

results 

 

 Full 7-layer system 

expected 

End of 2012 
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Centip3De System Overview 

 Cluster architecture 

 4 Cores/cluster 

 1kB I$, 8kB D$ 

 Local clock controller 

operates cores 

90˚ Out-of-phase 

 1591 F2F connections 

per cluster 

 

 Organized into layer 

pairs (cachecore) 

 Minimizes routing 

 Up to two pairs 

 16 clusters per pair 

 Cores have only vertical interconnections 

Cluster 

x32 
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Centip3De System Overview 

 Bus interconnect  

architecture 

 Up to 500 MHz 

 9-11 cycle latency 

 1-3 core cycles 

 8 lanes, each 128b 

 One per DRAM 

interface 

 Each cluster connects 

to all eight 

 1024b total 

 Vertically connected 

through all four layers 

 Flipping interface enables 128-core system 

 

 

 

 

 

Bus 

System 
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Centip3De System Overview 

 3D-Stacked DRAM 

 Tezzaron Octopus 

 

 1 control layer 

 130nm CMOS 

 

 1 Gb bitcell layers 

 Up to two layers 

 DRAM process 

 

 8x 128b DDR2 

interfaces 

 Operated at bus frequency (up to 500 MHz) 

 

 

DRAM System 
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Centip3De System Overview 

28485 F2F 

3024 B2B 

28485 F2F 

3624 B2B 
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Centip3De System Overview 

130nm process 

12.66x5mm per layer 

28.4M device core layer 

18.0M device cache layer 
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2-Layer Stacking Process Evaluated 

Core Layer 

Cache Layer 

For the measured 2-layer system, 

aluminum wirebond pads were used instead 

Wirebonds 

Aluminum wirebonding pads 

connected to perimeter 

TSVs like for 7-layer 

N P 
N P 

F2F 
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Cache 3D Connections 

SRAM SRAM
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Core 3D Connections 

Core 0 Core 1

Core 2Core 3

Sea of Gates
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Cluster 3D Connections 

1591 F2F Connections 

Each saved ~600-1000um in routing 

Prevented wiring congestion around SRAMS 
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Silicon Results 

DRAM Control Layer
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Cache Bus Hub
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DRAM Bus Hub
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Die Shot 

Aluminum 

wirebond 

pads 

DRAM 

Interface/ 

Bus Hub 

4-Core 

Cluster 

Looking through back of core-layer 

130nm process 

12.66x5mm per layer 

28.4M device core layer 

18.0M device cache layer 
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System Configurations 
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Measured Results 

4-Core 3-Core 2-Core 1-Core
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Boosting a single cluster  

to 1-core mode requires 

disabling, or down-boosting 

other clusters 

 

1-core cluster: 

 = 15x 4-core clusters 

 = 6x 3-core clusters 

 = 4.5x 2-core clusters 

 

Baseline configuration 

depends on TDP and  

processing needs 
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Measured Results 
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Measured Results 

4-Core 3-Core 2-Core 1-Core
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Measured Results: 

Centip3De – 3,930 (130nm) 

 

Industry Comparison: 

ARM A9 – 8,000 (40nm) [1] 

 

Estimated Results: 

Centip3De – 18,500 (45nm) 

[1] http://arm.com/products/processors/cortex-a/cortex-a9.php, ARM Ltd, 2011. 
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Conclusion 

 Near threshold computing (NTC) 

 Need low power solutions to maintain TDP 

 Achieves 10x energy efficiency => 10x more computation to give TDP 

 Offers optimum balance between performance and energy 

 Allows boosting for single threaded performance (Amdahl's law) 

 

 Large scale 3D CMP demonstrated 

 64 cores currently 

 128 cores + DRAM in the future 

 3D design shown to be feasible 

 

 This work was funded and organized with the help of DARPA, 

Tezzaron, ARM, and the National Science Foundation 

 


